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1 Executive Summary 
The holistic railway infrastructure digital twin (DT) platform is sophisticated and consists 
of a series of submodels (e.g., turnouts, tracks, vehicles, etc.) that are built through various 
methodologies and software. However, integrating these submodels into the DT platform 
is tremendously challenging due to considerable computational complexity, software and 
interface restrictions. In this report, we present a machine learning (ML) based surrogate 
modelling methodology for the submodel integration in the holistic railway infrastructure 
DT platform to enable the large scale simulations and illustrate the methodology through 
a case study. The main contribution of our work lies in the well-built ML-based surrogate 
modelling methodology for reducing the computation complexity and time of different 
submodels, which facilitates the unification and integration of different submodels. 
Furthermore, this approach can also be applied to other submodels and help to build the 
holistic railway DT platform collaboratively. 
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3 Design Process 
In this document, we will introduce an ML-based surrogate modeling methodology for 
replacing the railway vehicle-track MBD model as a use case. In subsection 3.1, we will 
briefly introduce the MBD model for railway vehicle-track dynamics analysis. In subsection 
3.2, the general development process of ML-based surrogate modeling methodology will 
be demonstrated. Then we will analyze and validate the surrogate model with the dataset 
generated from the MBD Model and the measurement dataset collected from the ¨OBB-
Infrastructure AG (Infrastructure Manager of Austrian Federal Railways) track system in 
subsection 3.3. In the end, the integration process of the sub-model into the holistic railway 
DT platform will be briefly discussed in subsection 3.4. 
 

3.1 MBD Model of the railway vehicle-track dynamics 
 
The interaction between the wheels and the track determines the dynamic behavior of 
railway vehicles. The geometry irregularities of the track can result in large dynamic forces 
on the vehicles, which can damage the vehicle wheels, leading to derailments in the worst 
cases. Therefore, understanding vehicle-track dynamics is vital for the RIS. The 
commercial software SimPACK, which can provide a reliable way to understand the 
dynamic forces acting on the track elements and the vehicles, is used to build the MBD 
model. SimPACK can generate different types of track irregularities using the Power 
Spectral Density (PSD) function, which describes the frequency-specific power 
distribution of the track excitation. The track excitation is deployed to the predefined track. 
Usually, the calculation of the PSD is based on the relevant regulations (commonly known 
as the ERRI B176 [15]), which are established from various parameters measured by the 
European railway operators. In the end, the irregularity data can be utilized as the input 
for the MBD model. The calculated forces on the wheelset can be extracted from the MBD 
Model as outputs. 
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3.2 Development process of ML-based surrogate modeling 
methodology 

 

                    Fig. 1. Landscape of the ML-based surrogate modeling methodology 

 

Consequently, establishing the above-mentioned ML-based surrogate modeling 
methodology is a significant part of the R4F research program. It will provide plenty of 
opportunities for future work, pushing sustainable development of the holistic large-scale 
railway DT system. Figure 1 presents an overview of the development process of the ML-
based surrogate modeling methodology.  
 
Step 1, the essential sub-variables, such as track length, velocity, and vehicle mass, are 
defined in the MBD model. After that, the PSD functions are created based on practical 
requirements (frequency and amplitude, etc.) in SimPACK. Accordingly, the track 
excitation is generated, and its related parameters are also defined (frequency interval 
type, start and end distance, etc.).  
 
Step 2, different types of track irregularities are created by the corresponding track 
excitation based on the actual demands (e.g., vertical, lateral, cross-level track 
irregularities or any of their combinations). These irregularities work correspondingly 
together to determine the forces on the wheelset. Then, the MBD model is run with a 
solver implemented through a SODASRT integration method in SimPACK.  
 

b1 = [1:3];
b2 = [1:3];
narx_net = narxnet(b1,b2,50);
narx_net.divideFcn = '';
narx_net.trainParam.min_grad = 1e-10;
[Xs,Xi,Ai,Ts] = preparets(net,xcell,{},t);
[net,tr] = train(net,Xs,Ts,Xi,Ai);
plotperform(tr);
view(net)
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Step 3. After the simulation is done, the dynamic responses, i.e., the sum of wheelset 
forces, are collected from the post-processing software SimPACK-Post as output data. 
Different types of track irregularities as input data and the wheelset forces as output data 
are sent to the ML model for further ML training and testing. 
 
Step 4. In the ML Model, all the input and output data from the MBD Model are first 
processed. To reduce the computation complexity, all the input data (i.e., different track 
irregularities) and the corresponding output data (i.e., wheelset forces) are equally divided 
into multiple datasets. Then, these datasets are randomly split into two groups: one group 
for network training and the other group for network testing. After that, the input datasets 
are normalized and standardized. The purpose of normalization is to make the data 
homogeneous across all different track irregularity dimensions, which helps to improve 
the data quality. Standardization means putting various features of all types of input data 
on the same scale. In other words, standardized data may be described as rescaling the 
characteristics of the input data so that their mean is 0 and the standard deviation is 1. 
After normalization and standardization, the datasets are fed to the ML Network for 
training and testing. The ML network we used in this study is a nonlinear autoregressive 
network with exogenous inputs (NARX), which is a recurrent dynamic neural architecture. 
It is one type of feed-forward time delay neural networks (TDNN) and is commonly used 
in time series data prediction.  
 
Step 5. The landscape of the NARX model utilized in this paper is presented. The training 
algorithm applied in this model is the Levenberg-Marquardt algorithm. For regular 
networks in which the number of weights is under a few hundred, the Levenberg-
Marquardt algorithm has the fastest convergence speed in function approximation 
problems [11]. Furthermore, with this algorithm, the squared errors and weights may be 
continuously reduced before reaching the optimum combination for the best-performing 
network so that overtraining can be avoided. During training, the number of neurons and 
delays needs to be determined from experimental iterations.  
 
Step 6. The network’s performance is evaluated using the normalized Root Mean Square 
Error (RMSE). After the training process is done, the testing datasets are applied to the 
well-trained ML model to evaluate the performance (Step 6). Finally, for validation, 
measurement data are applied to both the MBD Model and the ML Model as input. The 
results from both models are compared to validate the fidelity of the ML-based surrogate 
model. 
 

3.3 Case study: building, testing and validation 
 

We built an MBD model to simulate the railway vehicle-track dynamics, which is based on 
the Manchester Benchmarks Passenger Vehicle. The reliability and fidelity of surrogate 
models are of great importance. A well-built surrogate model should ensure the integrity 
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of the original resources and the reliability of the optimization, prediction and feasibility 
evaluation. Therefore, it is a vital task to validate the trained ML Model properly. In this 
study, the measurement data from the Austrian national railway track system are 
employed for the final validation of the fidelity of the ML-based surrogate model. Due to 
the measurement restrictions, only the vertical track irregularities are obtained. These 
measured vertical track irregularities are composed of two dimensions, i.e., irregularities 
from the left-side track and right-side track. In line with the measurement data, two-
dimensional input datasets are created following Step 1-3 in Figure 1. The vertical 
wheelset forces were extracted from SimPACK-Post as the output data. 

 
 
Fig. 2. Comparison between the output of MBD simulation (MBS) and ML surrogate 
model. The input datasets are either the testing dataset (upper two panels) or the 
measurement dataset (lower two panels). 
 
 
All the presented data are normalized (with center 0 and standard deviation 1). Figure 2 
(a) shows the normalized testing input dataset of the irregularities of the left and right 
tracks generated from MBD simulation for 1800 timesteps. Figure 2 (b) shows the 
normalized simulated output data from the MBD model and the predicted results of the 
ML-based surrogate model. It can be seen that the predicted results are in perfect 
coincidence with the simulation results from MBD Model. The corresponding normalized 
RMSE value between the two results is 0.48%, which indicates the ML-based surrogate 
model can perfectly replicate the MBD model with high precision. Then, we used the 
measurement datasets provided by the Austrian national railway track system to prove 
the fidelity of the ML surrogate model. Figure 2 (c) shows the irregularities of the left and 
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right tracks that are measured from a 25m-long track in a part of the Austrian railway 
system.  

3.4 Conclusion and Future Work 
In conclusion, the well-built ML-based surrogate model can make quick and precise 
predictions of the vertical dynamic responses based on different track irregularities. The 
surrogate model can replace the MBD simulation efficiently and be easily integrated into 
the holistic railway DT systems, as it has much less computational complexity than the 
traditional MBD simulation. The calculation efficiency is also greatly improved. For a 5 km 
long railway, it only takes about 8 seconds for the ML-based surrogate model to finish the 
calculation, a value that is three orders lower than the time needed for the MBD simulation 
(30 minutes). Furthermore, the proposed methodology can also enable the integration of 
different surrogate models into the holistic railway DT Platform in a fast and reliable way. 
The presented study outlines a broad spectrum of conceptual architecture for an entirely 
virtual validation platform for the integration of models and data of railway infrastructure 
subsystems. More use cases shall be integrated into this platform to validate its reliability 
and fidelity in future publications. Visualization research is conducted according to the 
principles of user-centered design and improved iteratively based on the properties of 
available data and the feedback of domain scientists. 
 
Consequently, establishing the above-mentioned ML-based surrogate modeling 
methodology is a significant part of the R4F research program. It will provide plenty of 
opportunities for future work, pushing sustainable development of the holistic large-scale 
railway DT system. 
 
 
 

 

 

 

 

 

 

 

 

 

 




